OXFORD CAMBRIDGE AND RSA EXAMINATIONS
 Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4725

Further Pure Mathematics 1
Tuesday 7 JUNE 2005
Afternoon
1 hour 30 minutes
Additional materials:
Answer booklet
Graph paper
List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Use the standard results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^{2}$ to show that, for all positive integers n,

$$
\begin{equation*}
\sum_{r=1}^{n}\left(6 r^{2}+2 r+1\right)=n\left(2 n^{2}+4 n+3\right) \tag{6}
\end{equation*}
$$

2 The matrices \mathbf{A} and \mathbf{I} are given by $\mathbf{A}=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)$ and $\mathbf{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ respectively.
(i) Find \mathbf{A}^{2} and verify that $\mathbf{A}^{2}=4 \mathbf{A}-\mathbf{I}$.
(ii) Hence, or otherwise, show that $\mathbf{A}^{-1}=4 \mathbf{I}-\mathbf{A}$.

3 The complex numbers $2+3 \mathrm{i}$ and $4-\mathrm{i}$ are denoted by z and w respectively. Express each of the following in the form $x+\mathrm{i} y$, showing clearly how you obtain your answers.
(i) $z+5 w$,
(ii) $z^{*} w$, where z^{*} is the complex conjugate of z,
(iii) $\frac{1}{w}$.

4 Use an algebraic method to find the square roots of the complex number $21-20 \mathrm{i}$.
(i) Show that

$$
\begin{equation*}
\frac{r+1}{r+2}-\frac{r}{r+1}=\frac{1}{(r+1)(r+2)} \tag{2}
\end{equation*}
$$

(ii) Hence find an expression, in terms of n, for

$$
\begin{equation*}
\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\ldots+\frac{1}{(n+1)(n+2)} \tag{4}
\end{equation*}
$$

(iii) Hence write down the value of $\sum_{r=1}^{\infty} \frac{1}{(r+1)(r+2)}$.

6 The loci C_{1} and C_{2} are given by

$$
|z-2 \mathrm{i}|=2 \quad \text { and } \quad|z+1|=|z+\mathrm{i}|
$$

respectively.
(i) Sketch, on a single Argand diagram, the loci C_{1} and C_{2}.
(ii) Hence write down the complex numbers represented by the points of intersection of C_{1} and C_{2}.
$7 \quad$ The matrix \mathbf{B} is given by $\mathbf{B}=\left(\begin{array}{rrr}a & 1 & 3 \\ 2 & 1 & -1 \\ 0 & 1 & 2\end{array}\right)$.
(i) Given that \mathbf{B} is singular, show that $a=-\frac{2}{3}$.
(ii) Given instead that \mathbf{B} is non-singular, find the inverse matrix \mathbf{B}^{-1}.
(iii) Hence, or otherwise, solve the equations

$$
\begin{align*}
-x+y+3 z & =1 \\
2 x+y-z & =4 \\
y+2 z & =-1 \tag{3}
\end{align*}
$$

8 (a) The quadratic equation $x^{2}-2 x+4=0$ has roots α and β.
(i) Write down the values of $\alpha+\beta$ and $\alpha \beta$.
(ii) Show that $\alpha^{2}+\beta^{2}=-4$.
(iii) Hence find a quadratic equation which has roots α^{2} and β^{2}.
(b) The cubic equation $x^{3}-12 x^{2}+a x-48=0$ has roots $p, 2 p$ and $3 p$.
(i) Find the value of p.
(ii) Hence find the value of a.

9 (i) Write down the matrix \mathbf{C} which represents a stretch, scale factor 2 , in the x-direction.
(ii) The matrix \mathbf{D} is given by $\mathbf{D}=\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)$. Describe fully the geometrical transformation represented by \mathbf{D}.
(iii) The matrix \mathbf{M} represents the combined effect of the transformation represented by \mathbf{C} followed by the transformation represented by D. Show that

$$
\mathbf{M}=\left(\begin{array}{ll}
2 & 3 \tag{2}\\
0 & 1
\end{array}\right)
$$

(iv) Prove by induction that $\mathbf{M}^{n}=\left(\begin{array}{cc}2^{n} & 3\left(2^{n}-1\right) \\ 0 & 1\end{array}\right)$, for all positive integers n.

BLANK PAGE

BLANK PAGE

\qquad

\qquad
\qquad
\qquad

